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INTRODUCTION:

Effective computational tools are developed for improved detection, diagnosis, and
monitoring of breast cancer. A tactile mapping device (TMD) is tested for the early
detection of breast cancer through more objective and quantitative breast palpation.
Following the detection of breast cancer, diagnosis of the breast is the next step. We
introduce a hybrid source decomposition algorithm, which allows for a computational
characterization of tumor microvascular heterogeneity in both spatial and temporal
domains. The goal is to reveal temporal-spatial patterns for the visualization and
quantification of tumor-induced angiogenesis and response to therapy using dynamic
contrast-enhanced magnetic resonance imaging (DCE-MRI). An image-based change
detection approach is proposed to assess tumor’s response to therapy. Based on
promising experimental results, we anticipate that functional imaging based
computational characterization of tumor heterogeneity and response will be useful in a
wide variety of medical imaging studies.

Our considerable efforts in the past year are:

e To construct training and testing databases of tactile mapping images and
associated data.

e To construct MR modeling of tumor to estimate and tract changes of the tumor
across time.

e To evaluate the performance of the TMD+NN in diagnosis and monitoring in
terms of sensitivity to changes and reproducibility to measurements.




BODY:

In the first year of this award, we have fully demonstrated the feasibility of the tactile
mapping device (TMD) for improving breast cancer examination technique in diagnosis,
documentation, and training. In particular, the results have shown that new tactile
mapping technology can quantitatively measure the location and applied forces in breast
palpation, and the tactile features of detected breast lumps. The prototype interactive
training program can track finger motions and applied forces during breast palpation in
which on-line feedback can help the training to better understand the search strategy and
adjust applied force level to increase the sensitivity.

In the second year of this award, we have integrated the tactile sensing technology and
the vision-based neural network for investigations of soft tissue interactions with the
tactile/force sensor. With the proven power of nonlinear signal processing both
convolution neural network (CNN) and multi-layer perceptron (MLP) can be sued to
characterized the hard inclusion (breast cancer) through neural network learning
capabilities, instead of using a simplified complex biomechanics model with many
heuristic assumptions. The tactile mapping systems using the neural networks and tactile
sensing array can extract invariant parameters associated with the lesions (i.e., the size
and depth of the lesion) can be estimated more accurately than those by the conventional
approaches.

Following the detection of breast cancer, diagnosis of the breast is the next step.
Recently, there has been a need to stimulate the development of novel imaging
technologies that exploit our current knowledge of the genetic and functional bases of
environmentally induced diseases and cancers. Such functional imaging capabilities will
allow for the visualization and explanation of important disease-causing physiological
and functional processes in the living tissue. Therefore, the potential of medical imaging
to improve cancer treatment extends well beyond using imaging information to help
select effective preventatives or treatments.

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has been
developed to provide additional functional information about tumor [1]. The technique
has emerged as an effective tool to access tumor vascular characteristics, which can be
used for measuring tissue perfusion, microvessel permeability, and vascular volume. The
imaging technique has provided the information needed for diagnosis and treatment
based on tumor location, size, and spread. It is also known that the kinetic characteristic
changes following treatment have correlated with histopathological outcome (e.g., tumor
blood volume, vascular permeability, and tumor perfusion) and patient survival. However
pathology reveal distinct heterogeneity within and among tumors, that suggesting the
need for individualize diagnosis and treatment to the unique characteristics of each
specific case. Thus, dynamic measurements, in which the uptake and washout of contrast
in tissues is monitored with time, can assist in the diagnosis of breast tumors and can
provide information on vascular permeability and perfusion. The techniques are being
applied to assess/monitor the response to treatment, which can be used to characterize
microvasculature providing information about tumor microvessel structure and function.




However, widespread success of DCE-MRI may be limited by the need for the further
development of technology, particularly due to the lacking of quantitative and
computational data analysis tools included by the instruments [1]. Therefore, an effective
computational data analysis technique for image-based lesion characterization of the
vascularlity patterns (fast-/slow-flow kinetic) in functional imaging will provide richer
diagnostic information, thus improve the sensitivity (e.g., signal-to-noise ratio) and
specificity (e.g., heterogeneity) for early disease detection/diagnosis and monitoring of
therapeutic response. The techniques are mainly used for the prognosis in breast cancer,
and it also shows more promising for assessing the response to therapy. Subsequently,
functional imaging will play an important role in the early detection, diagnosis, and
treatment of diseases [2].

In this research, we introduced a hybrid decomposition algorithm, which allows for a
computed simultaneous imaging of multiple biomarkers. The method is based on a
combination of time-activity curve clustering, pixel subset selection, and independent
component analysis. We demonstrate the principle of the approach on an image data set,
and we then apply the method to the tumor vascular characterization using DCE-MRL

Major portions of the work were reported in our manuscripts submitted to the
SPIE’s medical imaging conference and NNSP 2003 conference. [Attached]

KEY RESEARCH ACCOMPLISHMENTS:

Our key goal of Task II is to develop a neural network based intelligence system that
estimates and track the changes (in size and depth) of tumors over time after diagnosis
and during treatment. Furthermore, the MR modeling of tumor to estimate and track
changes of the tumor across time in diagnosis and treatment is presented. Our
accomplishments are the following:

e We have developed neural network training algorithms and computer
interpretation codes, convolution neural network (CNN) based breast tumor
characterization and parameter estimation.

e We have constructed the databases of tactile mapping images and the associated
data for the training and testing of our neural network algorithms.

e We have developed a hybrid source decomposition algorithm, which allows for a
computational characterization of tumor microvascular heterogeneity in both
spatial and temporal domains. The goal is to reveal temporal-spatial patterns for
the visualization and quantification of tumor-induced angiogenesis and response
to therapy using dynamic contrast-enhanced magnetic resonance imaging (DCE-
MRI).




REPORTABLE OUTCOMES:

e R. Srikanchana, Functional Imaging and Analysis of Tumor Heterogeneity by
Cluster and Independent Component Analysis, Doctoral dissertation, The Catholic
University of America, 2003.

e Y. Wang, J. Zhang, R. Srikanchana, J. Xuan, Z. Wang, Z. Szabo, Z. Bhujwalla, P.
Choyke, K. Li, “Computed Simultaneous Imaging of Multiple Biomarkers,” Proc.
IEEE Neural Networks for Signal Processing, 2003.

e J. Zhang, R. Srikanchana, J. Xuan, K. Li, Y. Wang “Partially-Independent
Component Analysis for Molecular Imaging,” SPIE 's Intl. Symp. Medical
Imaging, vol. 5032, San Diego, CA, February 2003

e Presented the paper “Partially-Independent Component Analysis for Molecular
Imaging,” SPIE’s Intl. Symp Medical Imaging, San Diego, CA, Feb. 2003.

CONCLUSIONS.

In this research, effective computational tools are developed for improved detection,
diagnosis, and monitoring of breast cancer and response to therapy. We have
demonstrated the principle of the approaches on both simulated and real data sets. Based
on promising experimental results, we anticipate that functional imaging based
computational characterization of tumor heterogeneity and response will be useful in a
wide variety of medical imaging studies.

The main contribution of this research have shown that the TMD with associated new
tools will improve physical breast examination in the ability to detect small tumors in
breast palpation and increase the accuracy of early detection, leading to improved
diagnosis and a reduction in breast cancer mortality. We have adapted new tactile
mapping technology to the needs of improving physical breast examination and gather
preliminary clinical data. We have conducted a study to advance fundamental
understanding of palpation and solve these practical problems through the creation of a
new TMD. This device measured three key variables during palpation: the examiner's
search patterns, the applied forces, and the small-scale pressure variations at the skin due
to lumps. A preliminary TMD prototype demonstrated the feasibility and effectiveness.
We have heavily focused on the DCE-MRI based angiogenesis imaging to elucidate two
main challenging aspects (tumor heterogeneity and composite signals) in data analysis of
functional imaging. Complementary to various existing methods (e.g., compartment
modeling, factor analysis), we introduced a hybrid source decomposition algorithm,
which allows for a computational characterization of tumor microvascular heterogeneity
in both spatial and temporal domains. The method is based on a combination of time-
activity curve clustering, pixel subset selection, and independent component analysis.
The goal is to reveal temporal-spatial patterns for the visualization and quantification of
tumor-induced angiogenesis and response to therapy using DCE-MRI of breast cancer.
As a result, spatial distribution of tumor blood volume, vascular permeability, and tumor
perfusion, as well as their TACs are simultaneously estimated, which closely resemble
the expected characteristics of the tumor heterogeneity. The method can be used to




evaluate tumor angiogenesis inhabitation for cancer therapy and monitor the kinetic
characteristic response to the anti-angiogenic following the treatment. The method
consists of two major steps: (1) a multivariate cluster analysis for the initialization of the
factor image decomposition; (2) a factor image decomposition by a partially-independent
component analysis

We wish to suggest that our preliminary studies indicated a promising utility of hybrid
blind source separation techniques in computed simultaneous imaging of multiple
biomarkers. Although the optimality of this method may be data-dependent, we would
expect it to be an effective tool applicable to various modalities.
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COMPUTED SIMULTANEOUS IMAGING OF
MULTIPLE BIOMARKERS

Yue Wang Jianhua Xuan Rujirutana Srikanchana Junying Zhang
Zsolt Szabo Zaver Bhujwalla Peter Choyke King Li
Department of Electrical & Computer Engineering, Virginia Polytechnic
Institute and State University, Alexandria, VA 22314 USA
Department of Electrical Engineering & Computer Science, The Catholic
University of America, Washington, DC 20064 USA
Department of Radiology and Radiological Science, Johns Hopkins

Medical Institutions, Baltimore, MD 21250 USA .
Imaging Science and Diagnostic Radiology Division, National
Institutes of Health, Bethesda, MD 20892 USA

Abstract. Functional-molecular imaging techniques promise pow-
erful tools for the visualization and elucidation of important disease-

' causing physiologic-molecular processes in living tissue. Most ap-
plications aim to find temporal-spatial patterns assocaited with
different disease stages. When multiple agents are used, imagery
signals often represent a composite of more than one distinct source
due to functional-molecular biomarker heterogeneity, independent
of spatial resolution. We therefore introduce a hybrid decomposi-
tion algorithm which allows for a computed simultaneous imaging
of multiple biomarkers. The method is based on a combination of
time-activity curve clustering, pixel subset selection, and indepen-
dent component analysis. We demonstrate the principle of the ap-
proach on an image data set, and we then apply the method to the
tumor vascular characterization using dynamic contrast-enhanced
magnetic resonance imaging and brain neuro-transporter imaging
using dynamic positron emission tomography.

INTRODUCTION

With rapid advances recently made in developing molecular /functional-targeted
contrast agents, ligands and imaging probes, new molecular or functional
imaging techniques promise powerful tools for the visualization and eluci-
.dation of important disease-causing physiologic and molecular processes in
living tissue [1, 2]. For example, dynamic contrast-enhanced magnetic reso- -
nance imaging (DCE-MRI) utilizes various molecular weight contrast agents
to access, non-invasively, tumor microvascular characteristics. The extravas-



cular retention of intravenous contrast medium correlates to accumulation at
sites of concentrated angiogenesis mediating molecules or microvessels (per-
meability). Kinetic (perfusion) changes following treatment have correlated
with histopathological outcome and patient survival, and shall potentially be
able to assess or predict the response to treatment particularly when using
anti-angiogenic drugs [2]. On the other hand, positron emission tomography
(PET) utilizes molecular probes (e.g, ligands for receptors or substrates for
intracellular enzymes) labeled with positron-emitting radioisotopes. Tracer
quantities yield a tomographic image after their retention, as a consequence of
either specific ligand-receptor binding or conversion of substrate to “trapped”
metabolic product(s) [1]. Fig. 1 shows the breast tumor images obtained by

DCE-MRI.

b Tumor ROI
DCE-MRI of breast cancer Slow-flo

Figure 1: Images of advanced breast tumor obtained by DCE-MRI, where tumor-
induced microvascular permeabilities, associated with different perfusion rate, re-

veal interesting spatial heterogeneous patterns.

As a common feature in functional or molecular imaging, pixels repre-
sent a composite of more than one distinct biomarker, independent of the
spatial resolution. For example, DCE-MRI reveals heterogeneous mixture
of tumor microvessels associated with different perfusion rate (e.g., fast vs.
slow flow), and PET imaging of the neuro-transporters in the brain indicates
that although highly sensitive to its target, the nonspecific binding of the
radioligand is significant. As a result, the overlap of multiple biomarkers
can severely decrease the sensitivity and specificity for the measurement of
functional or molecular signatures associated with different disease processes.

Two most popular methods that aim to extract the images of individual
biomarkers are compartment modeling and factor analysis [3]. Fig. 2 shows
macroscale kinetics of probe-biomarker interactions. Compartment model-
ing can find time-activity curves (TACs) which are functionally meaningful,
but requires pre-acquired input function and does not generally provide any
spatial information about different tissue kinetics [3]. Factor analysis can
find both factor images and TACs including the input function blindly, but
may result in the factor images or TACs that are not unique or functionally
meaningful [4]. Several blind compartment modeling methods were recently
proposed, where the major concern is the parameter identifiability [5].
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Figure 2: Illustration of two-tissue compartment] model and time-activity curves.

In this paper, we introduce a hybrid decomposition algorithm which allows
for a computed simultaneous imaging of multiple biomarkers. The method is
based on a combination of time-activity curve clustering, pixel subset selec-
tion, and independent component analysis. We demonstrate the principle of
the approach on an image data set, and we then apply the method to the tu-
mor vascular characterization using DCE-MRI and brain neuro-transporter

imaging using dynamic PET.

THEORY AND METHOD

Factored Compartment Model

We first introduce a simple form of linear factored compartment model and
discuss its application to simultaneous biomarker imaging. On the basis of
Fig. 2, tracer characterization within a region of interest (ROI) leads to a
set of first order differential equations:

C-f(t) = klfcp(t) — kaCf(t) ’ c _ kgt
cs(t) = kiscp(t) — koses(t) f(t) = k1fcp(t)®e_ ! 1
cm((t)) = cfl(t;JE L(t)icp((z) () = kucp(t)@e )

where cs(t) and c,(t) are the tissue activity in the fast turnover and slow
turnover pools, respectively, at time %; ¢,(t) is the tracer concentration in
plasma (i.e., the input function); ¢, (t) is the measured total tissue activity;
ki; and ks are the unidirectional transport constants from plasma to tissue
(permeability in ml/min/g: spatially-varying); koy and kg, are the rate con-
stants for efflux (perfusion in /min: spatially-invariant), and ® denotes the
mathematical convolution. Note that cs(t), cs(t), ¢p(t), and cm(t) are called
the time-activity curves (TACs).

Linear system theory suggests a simple method to convert temporal kinet-
ics to spatial information [6]. Let ki7(¢) and k(%) be the local permeability
parameters associated with pixels ¢ = 1,..., N, ie., the permeability of fast
and slow turnover (perfusion) regions in the pixel, respectively, and vp(¢) be
the plasma volume in tissue. The measured pixel TAC ¢, (4,t) is [2]

em(ist) = kap (D)cp(t) @ €7 + kro(cp(t) @ €7 v (i)ep(2)  (2)



that leads to a factored compartment model [4]

em(i,t1) cp(t) ® e_::”:l ep(t1) @ e—:hzl ep(t1)
.,t t ~koyto t —kK2st2 t .
Cm(Z 2) ep(ta) @ e cp(ta) @ e ep(t2) ks ()
-l ] R
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Cm(i; tn) Cp (tn) ® e~ kesta cp(tn) ® e kartn Cp(tﬂ) .

3)
where A= [ cp(t) ® e7*2rt ¢, (t) ® e k2t () ] is called mixing matrix
consisting of the TACs associated with underlying factor images whose least

square estimates are

Cm Ei, tlg
k £ Cm 'i, t2
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Below we propose three different approaches that aim to reconstruct the
factor images for the cases of multi-region insignificantly-overlapped, single-
region significantly-overlapped, and multi-region significantly-overlapped, het-

erogeneities.
Multivariate Cluster Analysis

Biomarker heterogeneity in space motivates a natural consideration of mul-
tivariate cluster analysis (i.e., pixel TAC classification) for factor image de-
composition. Since vascular space c,(t) is usually very high in the early
time-course and dropped quickly (e.g., delta function), our initial analysis
focuses on the tissue perfusion activities. Ideally, when there are only pure-
volume pixels, i.e., [ kis(s) kis(i) )7 has only one nonzero element, there
shall be a one-to-one mapping between pixel TAC ¢, (%,t) and factor TAC

¢5(t) or ¢s(t) except for an arbitrary scaling and noise effect.
Since the shape rather than the magnitude of the pixel TAC ¢ (3,t) is of
the interest, we perform “centering” and “normalization” on each pixel TAC

cm(i,t) over time t to a constant scale with mean zero
1 ka3
eh(it) = om(it) = = D em(iti)| /e (5)
J=1

where o, (;) is the standard deviation of cm(i,1) over &. We have
o0, (8) = K ()0 + KL, K@ +RL@ =1 (6

where each of {k} (%), ki,(),} can take on any value in the range (0, 1) subject
to the noise effort. Assume that the noise effect is approximately gaussian,




the pixel TAC cZ,(4,t) can be represented by a gaussian random vector ¢}, ()
with mean Bis and covariance matrix Cy,,. There has been considerable
success in using the standard finite normal mixture (SFNM) distribution to
adequately model clustered data set, taking a sum of the following general
form [7]
p(er) =mpg(ehlpy, Cp) +msglenlns, ©) - - (7)
where 7y ; is the corresponding mixing proportion, with 0 < 7fs < 1 and

s+ 75 =1, and g is the gaussian kernel.

The maximum likelihood estimation of the SFNM model can be performed
by the expectation-maximization (EM) algorithm. We have previously de-
veloped a VISual Data Analyzer (VISDA) to perform multivariate cluster
analysis [7, 8]. The procedure using VISDA provides “soft” splits of the
pixel TAC vectors, hence allowing the pixel TACs ¢m(i,t) to contribute si-
multaneously to the multiple factor TACs. Specifically, the outcome of such
a multivariate cluster analysis is the posterior Bayes probabilities of pixel ¢

associated with cy,s(t)

Z(f - W/;Sg(cr*n (7’)|:u'f,s: Cf,s) (8)
W= Sy eg(ch (i)lige, Cre)

that leads to

N N ' '
cr(t) = zisem(s,t) and c(t) = Y ziseml(i, ). 9)
3=] i=1 N

Having determined the factor TACs A= [ ¢f(t) c¢s(t) ], the factor im-
ages k= [ k(i) kis(i) |7 will be reconstructed from cn(%,t) according to
Eq. 4. However, pixels called partial-volume pizels represent a combination
of factor TACs due to the partial-overlap of the factor images in space. The
partial-volume effect can be, fortunately, solved by an appropriate partial-
volume modeling [9]. Let cys(t) be the TAC of the partial-volume pixels.
Based one the derivation in [9], we can write a SFNM model that includes

partial-volume effect as

p(er) =mrg(chlpy, Cr) + mog(ch 15, Ce)

* 1 " 1 1 T
+7s 9 (le'i (.u'j T I‘Ls))E(Cf+Cs)+'1_2'(l" /"’s)( /"’s) )
(10)
where 0 < mys < 1 and 7y + 7, 4 75, = 1. We have modified the VISDA
algorithm to estimate this constrained SFNM model. We will first apply
unconstrained EM algorithm to classify pixel TACs. into three clusters and
then, identify two clusters with smallest covariances as those representing
pure-volume pixels, and lastly re-estimate the model using a constrained EM
algorithm. In M-step specifically, we will only estimate the parameters of
pure-volume clusters using z;(y, 5)» and assign the parameter values for ‘the
partial-volume cluster. Once again, based on newly estimated factor TACs,

the factor images are accordingly reconstructed.



Independent Component Analysis

For single-region significantly-overlapped cases, the similarity between Eq. 3
and latent variable modeling motivates the consideration of independent com-
ponent analysis (ICA) approach [10]. As aforementioned, the factor images
are not observable, and nothing is known about the properties of the TACs.
In the absence of this information, one has to proceed “blindly” to recover the
factor images from their TAC-modulated activity mixtures [4]. ICA method
utilizes independency as a guiding principle and performs a nongaussian fac-
tor analysis leading to a umique solution [11]. More precisely, by assuming
that the hidden components are statistically independent with nongaussian
distributions, these hidden sources can be found by ICA, except for an ar-
bitrary scaling of each signal component and permutation of indices. ICA
approach exploits primarily temporal diversity in that the dynamic images
taken at different times carry different mixtures of the factor images [4].
Specifically, let demixing matrix W be an estimate that gives a good ap-
proximation of the inverse of A, then according to the Central Limit Theorem
that states “a sum of independent random variables usually has a distribu-
tion that is closer to gaussian than any of the original random variables,” the

recovered factor image
y(i) = Wep (i) = (WA)k(?) 11)

is usually more gaussian than any of k;(i) and becomes least gaussian when
it in fact equals one of the k; (%), i.e., each row or column of WA has only one
nonzero element where W=PDA ! with P and D being permutation and
scaling matrices. Thus, maximizing the nongaussianity of the output signal
y(4) produces the independent components, i.e., true k(z).

There are several ways for estimating the model of ICA including maxi-
mization of nongaussianity, maximum likelihood, and minimizing joint mu-
tual information. Most estimation principles and objective functions are
equivalent, at least in theory. Two popular and publicly available software
codes are FastICA and RunICA algorithms. A thorough discussion on ICA

theory can be found in a recent textbook [10].
Partially-Independent Component Analysis

For multi-region significantly-overlapped cases, we have found that direct ap-
plication of ICA to factor image decomposition using all the pixels, however,
often leads to an unsatisfactory recovery of k(i) [4]. This shall not be a sur-
prise since a more reasonable assumption, suggested by underlying anatomy,
is that the functional regions are piecewise homogeneous. This seemingly
global viewpoint turns out to have important consequences, since it implies
that the clustered joint distribution of the factor images exhibits only lo-
cal independency between the functional regions and hence, does not assure
the factor images to be globally independent [1 1]. Thus, we shall expect to
achieve a better decomposition using a subset of pixels that corresponds to




a homogeneously-overlapped single-region and would be approximately inde-
pendent.

..... - ‘ o S ~. 2
" Normalized true TACs - Normalized recovered TACs

Figure 3: Simulated image sequence consisting of "tire" and "coin" objects. The
mixing matrix resembles the typical shapes of fast and slow flows in DCE-MRI.

We therefore developed a partially-independent component analysis tech-
nique [4]. Rather than using all the pixels that give rise to a large separation
error, we attempt to identify a homogeneously-overlapped single-region and
over which to estimate the demixing matrix W and subsequently factor im-
ages k(7). Once again, the region identification can be, fortunately, solved
by performing multivariate pixel-TAC clustering using VISDA software [7, 8].
Note that in the present case, all the pixels are homogeneously-mixed partial-
volume pixels. Once all the homogeneously-overlapped individual regions are
identified, we shall perform ICA over each of the individual pixel subsets and
then take an averaged outcome of the factor images and TACs. The selection
of homogeneous ROIs can be done by either visual inspection or using model

" selection criteria [7].

EXPERIMENTAL RESULT

We shall now illustrate the operation of our method when applied to a simple
image data set, and then present results from the study of DCE-MRI and
PET data sets. We first consider a digital image set consisting of ten ob-
servations generated from the mixtures of “tire” and “coin” images, see Fig
3. Experiments are conducted over several runs of the ICA and PICA algo-
rithms, each with a different random mixing matrix. With an appropriate
pixel selection, the estimated TACs are given against the true TACs in Fig. 3
(bottom row). In this experiment, the basic principle and capable nature of
the PICA method are evident as the PICA, using only independent portion



of the observations, successfully separates two image patterns that have been
insufficiently recovered by conventional ICA [4].

The second experiment reports the effectiveness of multivariate pixel TAC
clustering for multi-region insignificantly-overlapped cases. The data set is
obtained by DCE-MRI, see in Fig. 1. This is an advanced breast tumor
case that shows significant vascular heterogeneity where the biomarkers are
vascular permeability with fast and slow perfusions. The two-dimensional
projection of the pixel TACs is given in Fig. 4 (left) and the estimated fac-
tor TACs are given in Fig. 4 (right). We noticed that the reconstructed
factor images by multivariate cluster analysis paralleled the expected vas-
cular distributions very nicely and many independent trials reached similar
satisfactory results, see Fig. 1 (right column). Since this represents also a
globally-dependent case, we have performed conventional ICA using all the
pixels, not to our surprise, the unexpected overlaps become clearly visible.

E
£
=)

Figure 4: Normalized pixel TAC projection (left) and the corresponding factor
TACs (right), obtained by VISDA software.

As an example of more challenging problems, we considered dynamic PET
imaging of SERT using C1!McN*5652. Images shown in Fig. 5 (top row)
were obtained using a GE 4096 whole body scanner with 15 slices at the center
"of the field-of-view. The slice thickness is 6.5 mm and the spatial resolution
is 677 mm. The images correspond to the 7th PET slice and were taken
between 8 to 18 time snapshots in the sequence. Our preliminary results
using PICA, shown in Fig. 5 (bottom row), were quite promising in that
the extracted factors closely resemble the expected compartmental kinetics
of the radlohgand consistent with its pharmacology, and the factor images
generated simultaneously reveal regional distribution of the specific (left) and
nonspecific (right) binding sites. We believe that this experiment indicated
a relatively successful application of PICA technique to neuro-transporter
binding separation in PET, given the difficulty of the task.

Final experiment reports the results of multivariate clustering in bhnd
estimation of both the input function and factor images (microvessel perme-
ability associated with fast and slow perfusions-FP/SP). The separation of
plasma space and fast perfusion permeability is expected challenging. We
divided the TACs into two portions over time. We firstly estimated FP and
SP TACs from the late portion of the TACs assuming insignificant presence
of the input function. We then removed the pixels belonging to SP and es-




FACTOR IMAGES

Figure 5: Dynamic PET images of the brain and the reconstructed factor images
that represent the specific and non-specific binding sites (2 biomarkers of interest).

timated the input function from the early portion of the TACs where the
FP was initialized by the outcomes of the preceding step. The results are
given in Fig. 6. The processed data sets are insufficient for a rigorous test of
our method. So far as we can tell, it is roughly compatible with the clinical
expectations, but it must be regarded as unproved until it has been checked
against more realistic truth.

Plasma space

FP permeability

SP permeabiity

Figure 6: Blindly estimated input function & factor images by pixel TAC clustering.

DISCUSSION

We wish to suggest that our preliminary studies indicated a promising util-
ity of hybrid blind source separation techniques in computed simultaneous



imaging of multiple biomarkers. Although the optimality of this method
may be data-dependent, we would expect it to be an effective tool applicable
to various modalities. We are currently investigating further application of
non-negative matrix factorization [12] and separation by non-negative reverse
correlation analysis, where the central’idea is to relax both the independence

and nongaussian assumptions.
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ABSTRACT

Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) has emerged as an effective tool to ac-
cess tumor vascular characteristics. DCE-MRI can be used to characterize microvasculature noninvasively for
providing information about tumor microvessel structure and function (e.g., tumor blood volume, vascular per-
meability, and tumor perfusion). However, pixels of DCE-MRI represent a composite of more than one distinct
functional biomarker (e.g., microvessels with fast or slow perfusion) whose spatial distributions are often het-
erogeneous, Complementary to various existing methods (e.g., compartment modeling, factor analysis), this
paper proposes a blind source separation method that allows for a computed simultaneous imaging of multiple
biomarkers from composite DCE-MRI sequences. The algorithm is based on a partially-independent component
analysis, whose parameters are estimated using a subset of informative pixels defining the independent portion
of the observations. We demonstrate the principle of the approach on simulated image data sets, and then apply
the method to the tissue heterogeneity characterization of breast tumors. As a result, spatial distribution of
tumor blood volume, vascular permeability, and tumor perfusion, as well as their time activity curves (TACs)

are simultaneously estimated.

Keywords: Independent component analysis (ICA), partially-independent component analysis (PICA), intrin-
sic dependency/non-intrinsic dependency of the components, dynamic contrast-enhanced magnetic resonance
imaging (DCE-MRI), compartment model, time activity curves (TACs).

1. INTRODUCTION

Remarkable advances in functional imaging have been made in developing molecular-targeted contrast agents,
ligands and imaging probes. Such imaging capabilities will allow for the visualization and elucidation of im-
portant disease-causing physiologic and molecular processes in living tissue. Subsequently, functional imaging
will play an important role in the early detection, diagnosis, and treatment of diseases.? It is known that
most advanced tumors are highly heterogeneous in structure that may reflect the underlying angiogenesis and Jor
metastasis.2 Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) is a noninvasive imaging
method for tumor microvascular characterization, which can be applied to assess (and potentially predict) the
response to treatment including anti-angiogenic drugs. Kinetic characteristics changes following treatment have
correlated with histopathological outcome (e.g., microvessel density) and patient survival. However, widespread
success of DCE-MRI may be limited by the need for further technology development, particularly due to the
lacking of quantitative and computational data analysis tools included by the instruments.

As a common problem in functional imaging, pixels represent a composite of more than one distinct molecular
marker (i.e., the observed pixel intensity will consist of the weighted sum of activities of the various molecules).”
This problem exists for various reasons, e.g., target mixture, probe non-specificity, and kinetics or spectrum
overlap. These aspects are briefly described as follows. First, mixed signals can result when distinct markers are
‘ .
|
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combined into a homogeneous mixture (e.g., fast and slow flow microvessels), independent of spatial resolution.
Second, ligand-receptor binding depends largely on the three-dimensional shapes of both elements, where a
ligand has many bonds that can be rotated into many different positions resulting in many shapes. 'Third,
even with a precision excitation source, any overlap of the absorption spectra of the fluorophores leads to the
excitation of multiple fluorophores whose emission spectra often also overlap. Thus, the observed signal intensity
may well be composed of the emission from several markers of differing concentration and kinetics/spectrum
(e.g., specific/nonspecific bindings, fast/slow flows). As a result, the overlap of multiple molecular signatures
can severely decrease the sensitivity and specificity for the measurement of molecular signatures associated with
different disease processes. As an example, imaging neuro-transporters in the brain requires the passage of
radioligands across the blood brain barrier by ways of their high lipophilicity. But lipophilicity carries the risk
of high nonspecific binding and retention in the white matter and could result in a bias of the estimated kinetic
parameters that are used to measure binding to specific recognition sites.

It is well known that Independent Component Analysis (ICA)?27 is a powerful method for blind source
separation with a strong assumption that the sources are independent to each other. This paper describes a
computation approach to dependent component imaging, where functional imaging is the case. The method
is to identify an informative index subspace and over which to separate mixed imagery sources by partially-
independent component analysis (PICA), whose parameters are estimated using informax principle. We discuss
the theoretic roadmap of the approach, and its applications to computer simulation phantoms and DCE-MRI

sequences of breast tumor.

2. THEORY AND METHOD

Independent component analysis (ICA)?8 is a statistical and computational technique for revealing hidden factors
that underlie sets of random variables, measurements, or signals. The application of ICA has been found in

many separate fields such as feature extraction, image processing, medical image processing, telecommunication,
econometric signal processing, and so fourth.!*'2? The method aims at recovering the unobservable independent

sources (or signals) from multiple observed data masked by linear or nonlinear mixing of the components.?” One
of the basic assumptions for ICA model is the statistical independence between components.?8 However, the
dependent components are often occurred in the real world situation, including functional imaging derived from

tissue samples.
2.1. Compartment Modeling

Compartment modeling forms the basis for tracer characterization in DCE-MRI.? Fig. 1 shows a parallel mode
two-tissue compartment model.2 The conventional compartment model leads to a set of first order differential

equations:
r(t) = kiep(t) — kares(t)
C(t) = KkisCp(t) — kascs(t) : (1)
c(t) = cr(t)+es(t)
em(t) = crt) +eot) + (1)

where ¢;(t) and ¢, (t) are the tissue activity in the fast turnover and slow turnover pools, respectively, at time
t; ¢,(t) is the tracer concentration in plasma (i.e., the input function); c:(¢) is the total tissue activity; em(t)
is the measured total tissue activity; kiy and ki, are the unidirectional transport constants from plasma to
tissue (ml/min/g: spatially shift-varying); and kz; and kg, are the rate constants for efflux (/min: spatially
shift-invariant). It is important to note that cs(t), ¢s(t), ¢,(t), and ¢, (¢) are also called the time-activity curves
(TACs) associated with a pre-defined region of interest (ROI).

It can be shown that ¢y () and ¢,(t) can be solved analytically in a parametric form

o) = kuclt) @e | )
cs(t) kyscy(t) @ e keet

where ® denotes the mathematical convolution operation. By fitting ¢ (t) to the measured ROI TAC in the
light of pre-acquired c,(t), the model parameters (kiz, ki, ko7, k2s) can be estimated.® 4

I
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Figure 1. Two-tissue compartmant model (parallel mode).

Based on linear system theory, a simple method can be developed to convert temporal kinetics to spatial
information.?"® First, we can normalize the ROI based tissue kinetics to define three TACs for each pixel

a,f(t) = Elfcf_t) = cp(t)®e—k2ft
W) = H = gEeek 9
o) = b | .

where v, is the plasma volume in tissue. Second, for pixels ¢ = 1,..., N within an ROI, we let k;;(¢) and ki,(7)
be the local model parameters and use them to describe the dynamics of each pixel in the ROI

em (i,) = k1g (1)ag (t) + ks (1) as (2) +vp (£)ap (2) (4)
where ¢, (1, 1) is the measured pixel TAC, ki7(?) and ky,(¢) are the permeability of fast and slow turnover regions
in the pixel, respectively, and v,(%) is the plasma volume in the pixel. We call this representation as factored

compartment modeling.®
Third, let (t;,%2,...,tn) be the sampling time points of the DCE-MRI measurements. Then, the linear least

square solution of Eq. ( 4) can be given by the following equation:

ko (i . om (%, %2
kif&)) = (aTA) AT : (5)
v, (1) ’
Cm(i:tn)
where
ap(ty) as(t:) ap(t)
ar(ta) as(tz) ap(t2)
A=l ] ®

ap(tn) s(tn) ap(tn)
The estimated values of k;y (i), k1s(i) and v,(é) vary from pixel to pixel and reconstruct three factor images
respectively. In particular, factor images k; f( ) and ki (%) represent ROI sub-regions with fast and slow kinetics,

respectively.
Preliminary effort has been recently made to perform blind compartment modeling without any knowledge

of the input function.’®*® An initial effort, eigenvector based multichannel blind deconvolution (EVAM),18

was used to estimate the parameters of a two-tissue compartment model for PET FDG 1magmg,12 but was
shown to give relatively poor (sensitive to noise) and non-unique estimates in a simulation study.’® A more
optimal solution was proposed on the application of the iterative quadratic maximum-likelihood (IQML) method
to parameter estimation.'® The blind identification problem is treated as a nonlinear least square problem
whose variables are separate.l” Other approaches in which both the input function and kinetic parameters are

treated as unknowns have been explored in [14, 15].



3. PARTIALLY-INDEPENDENT COMPONENT ANALYSIS (PICA)

3.1. Independent Component Analysis (ICA)

As aforementioned, one potential limitation associated with compartment analysis is that they are all restricted to

a parametric (thus simplified) model that may not adequately describe the underlying physiological or biochemical

processes about tracer-target interactions, in addition to the likely invasive acquisition of the input function.
* Although factor analysis (FA) attempts to solve the problem, the results were mostly unsatisfactory.

From linear system theory,?* it can be shown that the solution (zero-state response) to a kinetic system has

the very general form as shown in Eq. (4), or Eq. (7) as represented in vector-matrix form. This motivates
the consideration of a statistically-principled computational approach involving newly invented independent
component analysis (ICA) theory.11:26:27  The goal is to blindly and computationally reconstruct both A and

k based on cn. This philosophy for computed simultaneous imaging of multiple biomarkers is similar in spirit
to the blind source separation (BSS) for solving the cockiail-party problem.2®

From latent variable model interpretation,?® Eq. (7)

c'm("g:tl)
em(i, 1) ks (6
=A| k() |, (7)
) vp(1)
Cm(titn)

describes how the observed data are generated by a process of mixing the latent (or “hidden”) variables, where
matrix A is called the mizing matriz, the factor images (or “source signals”) are not observable, and nothing is
known about the properties of the TACs (or “mixing process”). In the absence of this information, one has to
proceed “blindly” to recover the factor images from their TAC-modulated activity mixtures.®

We can state such computed simultaneous imaging of multiple biomarkers as follows: “Given N independent
realizations of the measured pixel TAC vector ¢y (i,1), ¢ = 1,2,...,N, find an estimate of the inverse of the
TAC-mixing matrix A(t) and factor image vector k() = [k17(7), ki (9)]7.”

ICA method, as a newly invented statistical and neural computation technique, promises a powerful computa-
tional tool for separating hidden sources from mixed signals when many classic methods fail completely.26 ICA
method utilizes independence as a guiding principle and performs BSS based on a nongaussian factor analysis
with a unique solution.’? More precisely, by assuming that the hidden components are statistically independent
with nongaussian distributions, these hidden sources can be found by ICA, except for an arbitrary scaling of
each signal component and permutation of indices. In other words, it is feasible to find a demixing matrix W
whose individual rows are a rescaling and permutation of those of the mixing matrix A. ICA approach exploits
primarily temporal diversity in that the dynamic images taken at different times carry different mixtures of the
factor images.5 There are several algorithms for ICA that are derived from different optimization principles.

More details can be found in [11, 26].

3.2. Partially-ICA )
We have found that direct application of ICA to tumor heterogeneity characterization using all the pixels,
however, often leads to an unsatisfactory recovery of factor images k(3). By a closer look at the joint distribution
of the factor images, we found that they are often not statistically independent over the whole pixel set.® This
shall not be a surprise since factor images are expected to be piece-wise continuous thus form clusters over the
joint distribution. It can be further concluded that such joint distribution clusters correspond to the overlapped
homogeneous areas of the factor images. Thus, we shall expect to achieve a better factor image decomposition
using a subset of pixels that supports the independency of the factor images. )
Inspired by such reasoning, we proposed a partially-ICA (PICA) technique in [5]. Rather than using all
the pixels that give rise to a large decomposition error due to source dependency, we attempt to (iteratively)




identify a pixel subset supporting source independency and over which to estimate the demixing matrix W and

subsequently factor images k(7).
Compared with the basic ICA ‘model, where each observation is a linear combination of independent compo-
nents, our PICA mode] assumes that each observation z; is a linear mixture of statistically dependent components

81,89, 8n, With an n by n non-singular mixing matrix A, i.e.,

A 81
T2l =A| |, orx=As (8)
Ty Sn
where
81 $11 S12 ... Sim ‘ Zy Tz Zi2 -~ Tim
= | 52 | =| 520 S22 - Som =[S, S, S, x = Tz | __ | T2 T22 .- To2m =[X1’X2,~-~,Xm]
Sn Snl Sp2 ..o Sam Zn Zpl ZTn2 -+ Tam
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and m is the number of pixels in each functional image. Our task is to recover the dependent components from

observations by still utilizing ICA.

Let us review the mechanism of independent component analysis on basic ICA model. The components S;
are statistically independent, while based on the Central Limit Theorem; the distribution of a sum (observations)
of independent random variables (components) tends toward a Gaussian distribution, under certain conditions.
Therefore, the procedure that ICA searches for estimates of the components is to find directions, such that
the projections of observations on each direction are distributed with most non-Gaussian distribution. This
is the reason that ICA algorithm can help find the (statistically) precise estimate of the components if the
components are completely independent (except those two ambiguities of ICA on the scale and order of the
components). However, it will mislead direction finding if the components are dependent but ICA algorithm is
still superimposed on the observations, which are mixtures of the dependent components. Also, it will give rise
to a large separation error since all the pixels are utilized for ICA calculation while the components over all these

pixels are statistically dependent.

In order to effectively utilize ICA for this problem, an informative pixel index subspace (corresponding to the
independent part of the components) needs to be identified. Then we can perform ICA over this subspace to
recover the estimated mixing matrix over the subspace. Imposing this mixing matrix over all the pixel indices, -
the dependent components are then available to be recovered. The key point is to identify the informative pixel
indices, over which the components are statistically independent. The difficulty of this approach is that the
independent subspace of the components needs to be identified without any statistical information derived from
the components themselves: the components are just what need to be recovered. We only have information
derived from observations rather than from components. For simplicity, we consider the dependency of the
components rather than that of the observations. It is well know that the statistical dependency/independency
of the components s could be measured (visualized) by means of scatter plot with m sample points S1, Sz, ..., Sm
in n dimensional space (each dimension corresponds to a component): they consist of dependent/independent
components, which we can perform linear /nonlinear regression curve to estimate the statistical relation between

n components.

Clearly, when the number of pzxels m is much larver than the number of components n, which is the situation
for functional imaging, most probably the sample points are clustered into some clusters. Based on this obser-
vation, we divide the dependency of the components into two categories: intrinsic dependency and non-intrinsic
dependency. By intrinsic dependency of the components, we mean the dependency caused by the linear and/or
nonlinear correlation between components over cluster centers. We refer to non-intrinsic dependency of the
components as the dependency over sample points inside each cluster. In other words, the intrinsic dependency
corresponds to the global dependency among clusters, while non-intrinsic dependency corresponds to the local



dependency among samples in each cluster. For ICA to work well, we need to remove both intrinsic dependency
and non-intrinsic dependency of the components. This can be accomplished by removing the pixels that con-
tribute to intrinsic dependency and non-intrinsic dependency of the components, while retaining the informative
pixel indices. Finally, we will apply the ICA onto the subset of pixels for effective recovery of the components

over those informative pixel indices.

Notice that both intrinsic dependency and non-intrinsic dependency of the components should be removed
with only the information from observations rather than from components. A possible approach to remove intrin-
sic and non-intrinsic dependencies can be summarized as follows. The intrinsic dependency of the components
can be removed by removing all of the clusters except one. The non-intrinsic dependency of the components can
be alleviated by removing some sample points in the remained cluster. We will describe the removal procedures

next.

3.2.1. Intrinsic dependency removal

In order to remove intrinsic dependency of the components from the observations, the joint distribution of the
observations is estimated with Expectation-Maximization (EM) algorithm initialized by k-means method. We
assume that the number of clusters ¢ is known with some prior knowledge of the problem. In our DCE-MRI
study of breast tumor, the prior knowledge tells us that this number should be two considering the fast-flow and
slow-flow characteristics of the breast tumor. Assume that the distribution of the observations is in the following

form:

t
p(z) = Zmp(x; m;, o%) (10)
‘ i=1
where p(z; m;, ¢ 2) is the ith Gaussxan distribution with m; and a as its mean and varlance and 7; is the weight
of the ith Gaussian distribution, Zm = 1. Notice that each Gaussian distribution forms a cluster in scatter
i=1

plot of the observations.
We remove intrinsic dependency of the components in a statistical way. Each sample point X; is removed in

observation scatter plot statistically, with the probability of

p(Xj) - Wkp(xj;ﬂlk’ U%)
r1{removal of X;) = 11

where k is the index of the remaining cluster.

3.2.2. Non-intrinsic dependency Removal
For removal of non-intrinsic dependency of the components, the remained sample points in scatter plot of the
observations are statistically down-sampled with Pj as its parameter, i.e., X; is removed statistically with the

probability of

pr2(removal of X;) =

Tep(Xj3 i, 08) — Ps,if mep(Xj3me, 0%) 2 Py (12)
0 ,otherwise ’

As a result, the remained sample points in scatter plot of the observations would be uniformly distributed. It is
important that the statistical dependency of the components over the corresponding sample points are removed

without any destruction of the linear dependency of the observations over the remained sample points. In fact,
this dependency should not be removed for the following ICA computation, because the observations over the
remained sample points are still the linear mixing of the components, which are statistically independent over

the corresponding sample points from the PICA model.
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Figure 2. Removal of the intrinsic dependency between the components: (i) observation consists of more than one cluster;
(ii) the removal of intrinsic cluster dependency; (iii) the remaining cluster after the removal of intrinsic dependency.

3.2.3. Proposed Algorithm

Assume I is the remained sample point index subset, which is obtained by the removal of intrinsic dependency
and non-intrinsic dependency of the components from the scatter plot of the observations. I corresponds to the
independent pixel index subspace of the components. We have following procedure for a composite separation

of observations:
Step 1: estimate the joint distribution p(z) of the observations with EM algorithm initialized by k-means
method, where the number of clusters ¢ is assumed to be known from some prior knowledge;

Step 2: remove intrinsic dependency of the components by a statistical cluster removal method with eq. 11,
and remove non-intrinsic dependency of the components by a statistical down-sampling method by utilizing eq.
12 with parameter Py, both in the scatter plot of the observations; assume the retained pixel index subset is J;

Step 3: perform ICA on the retained part of the observations, {X;,j € I}, to obtain the estimated mixing
matrix A. Since the observations over the retained pixel index subspace I are independent, which satisfies the
assumption of basic ICA model; the mixing matrix A is expected to be better estimated except the ambiguity

of scaling and ordering.
Step 4: impose the estimated mixing matrix on the observations over entire indices to obtain the estimated

components, i.e., s = A7k

There are two parameters, t and Py, in the above algorithm. ¢ is set with some number by prior knowledge
of the problem, while Py is a trade-off parameter for controlling the uniformity of the distribution over the
sparseness of the sample points in the scatter plot of observations after the removal procedures. The smaller the
Py is, the more uniform the distribution of sample points over the index subspace looks like, and the less sample
points over the index subspace will be. The directions searched out for the sample points over the index subspace
with ICA algorithm determine the rows of the estimated mixing matrix. Theoretically speaking, if the parameter
Py is set smaller, the more uniformed distribution of the sample points in scatter plot of the observations over
the index subspace will merit this direction searching; On the other hand, the number of sample points becomes
less that limits the sample points to form that distribution, demeriting this direction searching.

4. RESULT AND DISCUSSION

We first applied our method to two computer simulation phantoms for the removal of intrinsic dependency
and non-intrinsic dependency among components. Then we applied our method to a data set generated by
compartment models, and a real DCE-MRI data set of tumor heterogeneity study.
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(b) The situation of non-linear dependency between components

Figure 3. The scatter plots of the component recovery process, for both linear (a) and non-linear (b) dependency
cases, with ICA and PICA method, (i) components, (ii) observations, (iii) recovered components from ICA method, (iv)
observations over the informative index subspace, (v) recovered components over the informative index subspace, “(vi)

recovered components over full index space from PICA method.

4.1. Phantom study
Figure 2(i) shows the data set that is generated by a sum of two Caussian distributions:” centered at (0,1) and
(1,0) with standard variations as two components. Clearly, the components are not independent (i.e., they are
intrinsically dependent), and the removal of either Gaussian distribution makes the sample points over the index
‘subspace statistically independent (see Figure 2(ii) and (iii)). . )
The next data set is generated such that the two components are independent in their first half (left half),
and have linear /non-linear correlation for the other half (right half), both with uniformly distributed intensities.
The mixing matrix is randomly generated to form observations. Clearly there is a linear/non-linear non-intrinsic
dependency between the components in this experiment. Figure 3 (upper/lower figure) shows the scatter plots in
the component recovery process with ICA and PICA methods for the situation of linear/non-linear dependency
between the components. Figure 4 shows the component recovery process, where the randomized intensities of the
first half and the second half are shown in two-dimensional images. Note that the pixels for the first component
in the figure are reordered according to its intensities. Evidently, the estimated components recovered by PICA
method are much closer to the ground truth of the components by comparing both the scatter plots in Figure

3(i), (iii), (vi) and the images in Figure 4(ii), (iv), (vi).

4.2. Experiments on compartment model

A compartment model is used to simulate the dynamic behavior of the breast tumor obtained with a DCE-
MRI sequence. The mask for the fast-flow (FF)/slow-flow (SF) patterns, as well as the overlap region of FF
and SF, is shown in Figure 5(a). The pixel intensity in the FF-dominant region/overlap region/SF-dominant
region is a linear combination of FF and SF patterns with the corresponding intensity weights of 0.9/0.5/0.1
and 0.1/0.5/0.9. In Figure 5(a), bright/dark gray color corresponds to FF/SF region, and the light gray/dark
corresponds to overlap/background, respectively. From the compartment model, we can get a sequence of images
shown in Figure 5(b). Our task is to identify the FF and SF patterns hidden in the observed sequence of images.
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(b) The situation of non-linear dependency between components

Figure 4. Recovery results from ICA and PICA, (i) observations, (ii) recovered components by utilizing ICA method,
(iii) observations over the informative index subspace, (iv) recovered components over the informative index subspace,
(v) recovered components over full index space by utilizing PICA method, (vi) real components.
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Figure 5. A simulater tumor phantom inclusing fast and slow kinetic subregions; (a) Image mask in compartment model,
(b) The sequence of images from the compartment model with the mask shown in (a)

‘We applied our PICA method to separate the observed composite images into two FF and SF patterns, as well
as to have the time-activity curve (TAC). The only two spatial patterns, FF and SF, which is a prior knowledge
he observed image sequence. Thus,

vo components from
nts Irom the cbserved

of this problem, induced us to make an assumption of two compon
we divided the image sequence into the first half of the sequence and the second half of the sequence, according

to the time index. Then PICA was performed for each pair of observed images, one from the first half, and
another from the second half, and the corresponding components were estimated. The final estimation of the
components (spatial FF/SF patterns) was attained by averaging all of the estimated components obtained from
each pair of observed images. Figure 6 shows the spatial FF/SF pattern and the corresponding TACs achieved
by PICA, together with those by ICA for comparison. Notice that each TAC according to the compartment
model should be a positive curve. Figure 6(a) shows a better performance for the estimation of the FF and
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b) that TACs from PICA are better than those from ICA, since
-flow activity of

SF patterns, which are closer to the ground %
Figure 6(a)(i)/(ii). It is shown from Figure 6
they are both approximately positive and more fit to the meaning of dynamic fast-flow and slow

the tumor tissue.
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(b) The corresponding TACs

Figure 6. ICA and PICA result, (a) the factor images results for compartment model with FF:overlap:SF region inten-
sity for FF pattern and for SF pattern to be 0.9:0.5:0.1 and 0.1:0.5:0.9/0.9:0.3:0.1 and 0.1:0.7:0.9 respectively; (b) the

corrseponding TACs.

4.3. Experiment on real DCE-MRI data set

We tested our PICA method with a real DCE-MRI sequence of breast tumor studies. Figure 7 shows a typical
sequence of breast tumor DCE-MRI study. Compared with results from the direct application of ICA, our results
using PICA shown in Figure 8, were quite promising in the extracted factors that closely resemble the expected
characteristics of compartmental kinetics of tumors. The factor images and the TACs reveal regional distribution

of the FF and SF patterns.
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(b) Typical sequences of DCE-MRI of breast tumor .

Figure 7. (a) Tumor (breast cancer) spatial heterogeneity revealed by DCE-MRI; (b) Sequences of the breast tumor
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Figure 8. The recovered factor images of the breast cancer spatial heterogeneity and the corresponding TACs revealed
by DCE-MRI with PICA method :
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